Download Water Conservation PowerPoint Presentation

Login   OR  Register

Iframe embed code :

Presentation url :


Description :

Read this water conservation ppt presentation slides to know everything about water conservation.

Tags :

water conservation | what is water conservation | the water project | water conservation in india | water conservation for class 5 | water conservation in hindi

Home / Science & Technology / Science & Technology Presentations / Water Conservation PowerPoint Presentation

Water Conservation PowerPoint Presentation

Ppt Presentation Embed Code   Zoom Ppt Presentation

About This Presentation

Description : Read this water conservation ppt presentation slides to know everything about water conservation. Read More

Tags : water conservation | what is water conservation | the water project | water conservation in india | water conservation for class 5 | water conservation in hindi

Published on : Sep 25, 2018
Views : 1632 | Downloads : 4

Download Now

Share on Social Media


PowerPoint is the world's most popular presentation software which can let you create professional Water Conservation powerpoint presentation easily and in no time. This helps you give your presentation on Water Conservation in a conference, a school lecture, a business proposal, in a webinar and business and professional representations.

The uploader spent his/her valuable time to create this Water Conservation powerpoint presentation slides, to share his/her useful content with the world. This ppt presentation uploaded by eryogeshsingh in Science & Technology ppt presentation category is available for free download,and can be used according to your industries like finance, marketing, education, health and many more.

SlidesFinder.com provides a platform to marketers, presenters and educationists along with being the preferred search engine for professional PowerPoint presentations on the Internet to upload their Water Conservation ppt presentation slides to help them BUILD THEIR CROWD!!

Water Conservation
Presentation Transcript

Slide 2 - Discuss the Need for Water Conservation. Discuss the Need for Monitoring, Submetering, and Leak Detection. Explain How Water Pressure Relates to Water Conservation. Discuss Water Recycling and Water Reuse. Discuss Cooling Water Conservation. Discuss Industrial Water Conservation Measures. Discuss Bathroom Water Conservation Measures. Discuss Xeriscape Landscaping. Discuss Water Conservation Education and Employee Participation. OBJECTIVES
Slide 3 - GOALS Understand the Need for Water Conservation. Understand the Need for Monitoring, Submetering, and Leak Detection. Be Familiar With How Water Pressure Relates to Water Conservation. Understand the Principles of Water Recycling and Water Reuse. Be Familiar With Cooling Water Conservation. Be Familiar With Industrial Water Conservation Measures. Understand Bathroom Water Conservation Measures. Understand the Basic Principles of Xeriscape Landscaping. Understand the Importance of Water Conservation Education and Employee Participation.
Slide 4 - BACKGROUND Drought costs ranchers and farmers an estimated $6-8 billion a year, more than damages caused by floods or hurricanes. The Dust Bowl Drought from 1931-1938 affected 50 million acres of land and left thousands of farmers homeless. In 1999 drought caused 1,695 counties in 44 states to be declared agricultural disaster areas.
Slide 5 - Supervisors Facility Engineers Maintenance Personnel Department Managers Building Occupants Process Specialists Environmental and Safety Committees LEARNERS
Slide 6 - OVERVIEW The goal of this course is to provide supervisors with the tools needed to help conserve water. It recommends practical, actions that can be carried out by facility management, maintenance personnel and building occupants. The course will help you to integrate good water conservation management activities into your existing organization and identify which of your staff have the necessary skills to carry out those activities.
Slide 7 - WHAT THIS COURSE DOES NOT DO The course is not intended to provide information to install, repair, or modify plumbing equipment, nor is it intended to teach personnel to become landscape architects. These specialties required training beyond the intended scope of this course. Where this expertise is needed, outside assistance should be solicited.
Slide 8 - SAFE DRINKING WATER ACT The Safe Drinking Water Act, Section 1455, as amended in 1996, requires the United States Environmental Protection Agency (EPA) to publish guidelines for use by water utilities in preparing a water conservation plan. States are to administer water conservation programs and to enact state regulations to conform to these guidelines.
Slide 9 - WHAT IS A DROUGHT? The National Weather Service defines a drought as “a period of abnormally dry weather that persists long enough to produce a serious hydrologic imbalance (for example crop damage, water supply shortage, etc.) The severity of the drought depends upon the degree of moisture deficiency, the duration and the size of the affected area.”
Slide 10 - WHY CONSERVE WATER? It is a resource that is a benefit to everyone. To save money. Lower consumption means lower water bills. To keep rates low. Maximizing current water supplies helps defer the need to develop new, more expensive sources of water. To prepare for a drought. Many areas of the country have experienced drought conditions in the past few years. Water conservation helps prepare for these worst of times. To comply with regulations. Many states and local regulators have established efficient water use regulations.
Slide 11 - TWO TYPES OF PRACTICES Engineering practices: practices based on modifications in plumbing, fixtures, or water supply operating procedures. Behavioral practices: practices based on changing water use habits.
Slide 12 - MONITORING Provides baseline information on quantities of overall company water use, the seasonal and hourly patterns of water use, and the quantities and quality of water use in individual processes. Baseline information on water use can be used to set company goals and to develop specific water use efficiency measures. Monitoring also raises employee awareness. Records of meter readings can be used to identify changes in water use rates and possible problems in a system.
Slide 13 - SUBMETERING The practice of placing water meters throughout a facility is called submetering. Submetering helps account for water usage and can help in the process of leak detection. Areas to consider submetering are landscaped areas, cafeterias, laundries, and major industrial equipment that use water. Submetering makes water users more aware of how much water they use and its cost. By placing meters and monitoring those meters throughout a facility, experts estimate that a facility can help reduce water usage by 20 to 40 percent.
Slide 14 - METER ACCURACY Water meters can be damaged and deteriorate with age, thus producing inaccurate readings. All meters, especially older meters, should be tested for accuracy on a regular basis. Meters that are used to measure large volumes of water may be too large for a customer's level of use and will tend to under-register water use. A Meter testing, calibration, repair, and replacement program needs to be established.
Slide 15 - LEAK DETECTION Repairing leaks saves money on water bills. The early detection of leaks also reduces the chances that leaks will cause major property damage. A leak detection strategy needs to employ regular on-site testing methods for detecting leaks along water distribution mains, valves, services, and meters. Leak detection programs are especially important in facilities that have large, old, deteriorating systems.
Slide 16 - LEAK DETECTION Automated sensors/telemetry. Remote sensors and monitoring software can alert personnel to leaks, fluctuations in pressure, problems with equipment integrity, and other concerns. Visual inspection program. This may include pipe inspection, cleaning, lining, and other maintenance efforts to improve the distribution system and prevent leaks and ruptures from occurring.
Slide 17 - WATER AUDITS Audits of large-volume users. Begin by identifying the categories of water use for the large-volume user. These may include process, sanitary, domestic, heating, cooling, outdoor, and other water uses. Second, a water audit should identify areas in which overall water use efficiency can be improved through alternative technologies or practices. Large-landscape audits. Effective audit programs can save 10 to 20 percent for both general industrial water usage and for large landscape water audits.
Slide 18 - REDUCING WATER PRESSURE Reducing excessive pressures in the water distribution system can save a significant quantity of water. Reducing water pressure can decrease leakage, the amount of flow through open faucets, and stresses on pipes and joints that may result in leaks. Lower water pressure may also decrease system deterioration, reducing the need for repairs and extending the life of existing facilities. Lower pressures can help reduce wear on end-use fixtures and appliances.
Slide 19 - REDUCING WATER PRESSURE Pressure-reducing valves. Can be installed on street mains, as well as individual buildings. Companies might also insert flow restrictors on services at the meter. Seek technical assistance from your water provider on pressure-reducing valves.
Slide 20 - WATER RECYCLING Water recycling is the reuse of water for the same application for which it was originally used. Factors that should be considered in a water recycling program include: - Identification of water reuse opportunities - Evaluation of the minimum water quality needed for a particular use - Evaluation of water quality degradation resulting from the use - Determination of the treatment steps.
Slide 21 - WATER REUSE Water reuse is the use of wastewater or reclaimed water (sometimes called “graywater”) from one application for another application. Some potential applications include other industrial uses in cooling water at power plants and oil refineries or industrial process water for such facilities as paper mills and carpet dyers, toilet flushing, dust control, construction activities, concrete mixing, and artificial lakes. Reused water can also be used in landscape irrigation, agricultural irrigation, aesthetic uses such as fountains, and fire protection.
Slide 22 - WATER REUSE Factors that should be considered in an industrial water reuse program include: Identification of water reuse opportunities Determination of the minimum water quality needed for the given use Identification of wastewater sources that satisfy the water quality requirements Determination of how the water can be transported to the new use
Slide 23 - COOLING WATER RECIRCULATION The use of water for cooling in industrial applications represents one of the largest water uses in the United States. The most water-intensive cooling method used in industrial applications is once-through cooling, in which water contacts and lowers the temperature of a heat source and then is discharged. Recycling water with a recirculating cooling system can greatly reduce water use by using the same water to perform several cooling operations. Three cooling water conservation approaches that can be used to reduce water use are evaporative cooling, ozonation, and air heat exchange.
Slide 24 - EVAPORATION COOLERS The principal use of water by evaporative coolers is to increase the humidity of incoming air being drawn into a building and decrease its temperature. The building’s air cools as it absorbs the moisture. Evaporative coolers require an annual maintenance check-up for the most efficient cooling.
Slide 25 - OZONATION The use of ozone to treat cooling tower water (ozonation): Can result in a 99% reduction in the appearance of bacteria. And personnel no longer have to handle chlorine, bromine, phosphates, and other chemicals. It helps keep the metal surfaces of pipes and equipment clean, making equipment more energy efficient. Controls corrosion by producing a protective coating on metal surfaces, extending equipment life. Acts as a strong disinfectant. Can use lower amounts of high-quality water and it reduces cooling tower blowdown water consumption by 50 to 90%.
Slide 26 - AIR HEAT EXCHANGE Air heat exchange works on the same principle as a car's radiator. In an air heat exchanger, a fan blows air past finned tubes carrying the recirculating cooling water. Air heat exchangers involve no water loss, but they can be relatively expensive when compared with cooling towers. Air heat exchangers can be more reliable and more productive than water cooling.
Slide 27 - ONCE-THROUGH COOLING Many facilities have one or more pieces of equipment cooled by a single-pass flow of water. After passing through and cooling the equipment, the water is usually discarded to a sanitary sewer system. Equipment that might use a once-through cooling system include degreasers, rectifiers, hydraulic equipment, x-ray machines, condensers, and viscosity baths. Also air conditioners, air compressors, hydraulic presses, welders and vacuum pumps.
Slide 28 - ONCE-THROUGH COOLING Alternatives for more efficient ways of cooling include: Air heat exchange Closed-loop recycled water. Use the pass-through water for landscape irrigation or other graywater uses.
Slide 29 - METAL FINISHING Platers and finishers, printed circuit board operators, fabricators, integrated circuit metal fabricators and other facilities use numerous process rinses and reaction baths. Water is essential in the manufacturing process for these facilities. There are several water conserving methods that manufacturers should consider including: Flow Monitoring and Control, First Stage Static Tanks, Counterflow Rinsing, Spray Rinsing, Membrane Technologies, Ion Exchange and Electrolyte Recovery.
Slide 30 - METAL FINISHING Flow Monitoring and Control Flow meters and manually-operated valves are relatively simple to operate and low in cost to install. Require operator attentiveness and knowledge of allowable rinse tank concentrations. Automatic control of rinsewater flows is possible using conductivity control or measurements of total dissolved solids (TDS) concentrations in rinses to control electrically operated valves.
Slide 31 - METAL FINISHING First Stage Static Tank For multi-tank rinsing, the first tank may be a “static” rinse tank rather than a continuous overflow tank. Water conservation is achieved by a high percentage of the drag-out is discharged into this first rinse tank. The first rinse tank can be allowed to become more concentrated than the rinses that follow it. Less water is used to periodically dump and refill the tank than for continuous overflow dilution.
Slide 32 - METAL FINISHING Counterflow Rinsing.
Slide 33 - METAL FINISHING Spray Rinsing Spray rinse systems may offer significant rinse water savings. As much as 60% reduction has been claimed by such systems when compared to immersion tanks. Spray rinsing should be combined with an automatic spray system that will reduce the chance of operator error.
Slide 34 - METAL FINISHING Membrane Technologies There are at least four different types of membrane technologies that include Microfiltration, Ultrafiltration, Reverse Osmosis and Electrodialysis. Generally, membrane technology is easy to maintain and operate. Pressure is applied to the feed side of the membrane which causes water and some selected solids to pass through.
Slide 35 - METAL FINISHING Ion Exchange Ion exchange is another common method and it involves the use of deionized water for removing contaminants from products and equipment. Deionized water contains no ions (such as salts), which tend to corrode or deposit onto metals. The reuse of once-used deionized water for a different application should also be considered.
Slide 36 - METAL FINISHING Electrolytic Recovery This process removes metal ions from solution, oxidizes cyanide, and reduces chromium in wastewaters. Metal ions are reduced at a cathode while oxygen evolves at an anode. This method conserves water by keeping a low metals concentration in the drag-out recovery tank, minimizing drag-out to the the rinse tank(s). This method is effective with copper, tin, silver, and other metals.
Slide 37 - CAFETERIAS AND RESTAURANTS Use water in garbage disposer only during operation. If thawing foods in cold running water, change to thawing under refrigeration, in a microwave, or in the cooking process. “Double Dip” to clean large volumes of produce. Replace "once through" water cooled ice machines and refrigeration condensers with air cooled machines. Limit dishwashing to full loads. Turn off the continuous flow used to clean the drain trays of the coffee/milk/soda beverage island.
Slide 38 - LAUNDRIES Reprogram machines to eliminate a rinse or suds cycle, if possible, and not restricted by health regulations. Reduce water levels, where possible, to minimize water required per load of washing. Wash full loads only. Evaluate wash formula and machine cycles for water use efficiency. When purchasing new machines, buy water-saving models.
Slide 39 - HOSPITALS AND CLINICS Turn off water required for film processing or cooling in the X-ray department when not in use. Recycle water where feasible, consistent with state and county requirements. Use full loads in sanitizer, sterilizer, dishwasher, and washing machines. Overhaul faulty steam traps on sterilizers. Replace equipment with water-saving models. Reduce the load on air conditioning units by shutting off air conditioning when and where it is not needed. Recover condensate and use it as make-up water.
Slide 40 - CLOSED-LOOP VEHICLE WASHERS Closed Loop Vehicle Washers The closed loop vehicle washers are facilities that completely recycle the wash water used in cleaning cars, trucks, etc. Wash water will go through three different treatment units before being recycled for reuse. The alpha treatment unit is an oil/water separator. The beta treatment unit removes fine dirt particles and any remaining hydrocarbons. The omega treatment adds ozone to the water before reuse.
Slide 41 - BATHROOM WATER To calculate the savings from a retrofit program, planners are required to make a number of assumptions about water use and savings. Some of the assumptions used in retrofitting are: Toilets (4-6 flushes per person per day) Showerheads (5-15 shower-use minutes per person per day) Bathroom Faucets (1/2 to 3 faucet-use minutes per person per day)
Slide 42 - LOW-FLUSH TOILETS More than 4.8 billion gallons of water is flushed down toilets each day in the United States. The average American uses about 9,000 gallons of water to flush 230 gallons of waste down the toilet per year. Conventional toilets use 3.5 to 5 gallons or more of water per flush, but low-flush toilets use only 1.6 gallons of water or less. Effective January 1, 1994, the Energy Policy Act of 1992 (Public Law 102-486) requires that all new toilets produced for home use must operate on 1.6 gallons per flush or less.
Slide 43 - TOILET DISPLACEMENT DEVICES By placing a one gallon milk jug in the tank of an older toilet, you can save one gallon of water per flush. Do not use bricks or stones because they can break up and cause damage to the plumbing. A toilet dam, which holds back a reservoir of water when the toilet is flushed, can also be used instead of a plastic container to save water. Toilet dams result in a savings of 1 to 2 gallons of water per flush.
Slide 44 - LOW-FLOW SHOWERHEADS Showers account for about 20 percent of total indoor non-industrial water use. By replacing standard 4.5-gallon-per-minute showerheads with 2.5-gallon-per-minute heads, which cost less than $5 each, one study found that shower water use was reduced over 34% with low flow showerheads.
Slide 45 - FAUCETS Faucet aerators can be easily installed and can reduce the water use at a faucet by as much as 60 percent while still maintaining a strong flow. Other options to consider are metered faucets (which stay open for a pre-set period of time and then close), self-closing faucets (which close as soon as you let go of the knob) and automatic sensor controlled faucets.
Slide 46 - RAIN WATER HARVESTING Rain Water Harvesting is capturing and storing rainfall to irrigate plants or to supply people and animals. A well-designed system will also decrease your landscape maintenance needs. All you need for a water harvesting system is rain, and a place to put it. A "catchment" is any large surface that can capture and/or carry water to where it can be used immediately or stored.
Slide 47 - RAIN WATER HARVESTING A water surplus available at the right time of year makes storage well worth the time and effort. A surplus becomes impractical when it must be stored for more than several months. Water stored for long periods of time will stagnate and become a health hazard. You can store water in a variety of ways: 55-gallon steel drums, oak barrels or underground storage tanks. Regular maintenance is critical to any dependable water harvesting system.
Slide 48 - XERISCAPE LANDSCAPE Businesses can save water in landscaping by using the principles of Xeriscape™, an efficiency-oriented approach to landscaping that encompasses seven essential principles: Planning and design Limited turf areas Efficient irrigation Soil improvement Mulching Use of lower water demand plants Appropriate maintenance
Slide 49 - XERISCAPE LANDSCAPE Planning and design Sketch your landscape with locations of existing structures, trees, shrubs and grass areas. Then consider the landscape budget, appearance, function, maintenance and water requirements. "Right Plant, Right Place": Select plants appropriately based upon their adaptability to climate, micro-climate, geological, and topographical conditions of the site. Protect and preserve native species. Use only ornamental fountains that incorporate water recirculation should be installed and operated.
Slide 50 - XERISCAPE LANDSCAPE Limited turf areas When considering a landscape's water requirement, it is important to note that turf grasses require more frequent watering and maintenance than most other landscape plants. When at all possible, minimize turf and other high water use, ornamental plants sparingly and only where necessary (such as sports fields, recreation areas and site entries). Avoid placing turf in long narrow areas and small odd-shaped areas.
Slide 51 - XERISCAPE LANDSCAPE Efficient Irrigation Hydrozones: Separate the landscape area plants with similar water needs in a similar microclimate. Provide water budget statement estimation. Design irrigation systems to avoid runoff. Incorporate electronic controllers with precise individual timing. Utilize irrigation-only meters (deduct meters). Use drip or other low volume irrigation whenever possible.
Slide 52 - XERISCAPE LANDSCAPE Soil improvement To increase plant health and conserve water, analyze your soil. If needed, add organic matter to the soil of shrub and flower bed areas. This increases the soil's ability to absorb and store water in a form available to the plant. As a rule-of-thumb, till in 4 to 6 inches of organic material such as shredded pine bark, peat and rice hulls. For trees, however, incorporating organic matter is not necessary; for large turf grass areas, it is not economically feasible.
Slide 53 - XERISCAPE LANDSCAPE Mulching Mulch is a layer of nonliving material covering the soil surface around plants. Mulches can be organic or inorganic materials. Use a mulch at least once a year. A good mulch conserves water by significantly reducing moisture evaporation from the soil. Mulch also reduces weed populations, prevents soil compaction and keeps soil temperatures moderate.
Slide 54 - XERISCAPE LANDSCAPE Use of lower water demand plants Utilize native plants that are drought resistant first in your landscaping. Utilize non-native plants only if they are drought resistant. Consult your local nursery for the best selection of trees, shrubs and plants.
Slide 55 - XERISCAPE LANDSCAPE Appropriate maintenance Plant establishment: Provide plant establishment period of 2-3 years. During this time, all plants should be sufficiently watered and not be subject to a water budget. Provide for the reduction and eventual elimination of supplemental irrigation for low water / drought tolerant plants after establishment period. Appropriate maintenance preserves the beauty of the Xeriscape landscape plus saves water. Pruning, weeding, proper fertilization, pest control and irrigation system adjustments all conserve water.
Slide 56 - DEVELOPING A WATER CONSERVATION PLAN Company policy statement Goals Action Plan Assigned responsibilities for planned implementation Procedures for implementation, evaluation, and revision
Slide 57 - EDUCATION Educating the workforce A successful water conservation program starts with educating the workforce. Supervisors should understand water bills, water usage rates and the company’s water system. Maintenance personnel should be familiar with water usage within the company. Shop personnel should be instructed on water conservation measures. Water conservation education should be a continual process.
Slide 58 - EMPLOYEE PARTICIPATION Employee Participation and Public Awareness. Start off your awareness program with a letter to all employees from the head of the company showing full support of the plan. Use bulletins, newsletters, and paycheck stuffers to communicate policies, programs, ideas etc. Hold staff meetings to communicate your company’s water conservation plan and progress in water savings. Promote a suggestion and incentive system and recognize people who have water saving ideas. Distribute water conservation booklets. Promote slogan and poster contests.
Slide 59 - CHECKLIST OF WATER CONSERVATION IDEAS For interior plumbing: Do dye-tablet test to check all tank toilets for leaks. Retrofit showerheads with water-conserving hardware. Retrofit faucets to flow at 2 gallons/minute or less. Consider metered, self-closing and automatic sensor faucets. Retrofit tank-type toilets with dams or water-filled plastic containers as displacement devices. Consider replacing toilets with “ultra-low” volume models. Retrofit urinals with flush valves that reduce the volume of water used per flush.
Slide 60 - CHECKLIST OF WATER CONSERVATION IDEAS For cooling towers: Prepare an inventory of each cooling tower, its cooling capability, and the equipment or process it serves. Meter and record the amount of makeup water added to each tower, and the amount of blow-down water discharged from each tower. Inventory the chemicals used for the treatment of recirculating cooling tower water. Tell your chemical vendor(s) that water conservation is a priority at your facility. Ask your vendor(s) to tell you about alternate programs that could reduce the amount of water that is bled-off from cooling towers.
Slide 61 - CHECKLIST OF WATER CONSERVATION IDEAS For evaporative coolers: Be sure coolers have pumps to recirculate the water through them. Check to make sure there is not an excessive amount of water in the coolers. For a typical small cooler, anything more than a few gallons per hour may be excessive. Pipe the bleed-off from your coolers to help water a landscaped area.
Slide 62 - CHECKLIST OF WATER CONSERVATION IDEAS For once-through cooling: Eliminate all uses of “once-through” cooling unless you reuse the water elsewhere for a beneficial purpose. Many water-cooled equipment can be replaced with air-cooled models. Connect a recirculating cooling water loop instead of a once-through cooling system.
Slide 63 - Remember, You Control Your Facility or Area! Review Procedures With Them Before Starting the Job! Ensure They Are Properly Trained! Determine Their Environmental Compliance Record! Determine Who Is in Charge of Their People! Determine How They Will Affect Your Facility’s Environmental Compliance! TIPS FOR USING CONTRACTORS
Slide 65 - THE IMPORTANCE OF A CLEAN ENVIRONMENT “I would ask all of us to remember that protecting our environment is about protecting where we live and how we live. Let us join together to protect our health, our economy, and our communities -- so all of us and our children and our grandchildren can enjoy a healthy and a prosperous life.” Carol Browner Former EPA Administrator