X

Download AIRCRAFT ELECTRICAL SYSTEMS PowerPoint Presentation

SlidesFinder-Advertising-Design.jpg

Login   OR  Register
X


Iframe embed code :



Presentation url :

Home / Science & Technology / Science & Technology Presentations / AIRCRAFT ELECTRICAL SYSTEMS PowerPoint Presentation

AIRCRAFT ELECTRICAL SYSTEMS PowerPoint Presentation

Ppt Presentation Embed Code   Zoom Ppt Presentation

PowerPoint is the world's most popular presentation software which can let you create professional AIRCRAFT ELECTRICAL SYSTEMS powerpoint presentation easily and in no time. This helps you give your presentation on AIRCRAFT ELECTRICAL SYSTEMS in a conference, a school lecture, a business proposal, in a webinar and business and professional representations.

The uploader spent his/her valuable time to create this AIRCRAFT ELECTRICAL SYSTEMS powerpoint presentation slides, to share his/her useful content with the world. This ppt presentation uploaded by worldwideweb in Science & Technology ppt presentation category is available for free download,and can be used according to your industries like finance, marketing, education, health and many more.

About This Presentation

Slide 1 - AIRCRAFT ELECTRICAL SYSTEMS
Slide 2 - Objectives Students will be able to: Describe the basic components of aircraft electrical system Explain operation of electrical system Interpret aircraft electrical diagram Select proper size of wire for installation Describe basic causes of electrical system malfunctions
Slide 3 - Elements of aircraft electrical systems An aircraft electrical system is mainly composed of : Power sources Components - Control devices - Conversion devices - Protection devices. Power distribution systems Electrical loads
Slide 4 - Electrical Power Sources Electricity power sources on an aircraft may be classified into two groups : Batteries - Lead-acid - Nickel-cadmium Generators - DC generators - AC generators
Slide 5 - A battery is a device that converts chemical energy into electrical energy. It is a power reservoir that stores energy in chemical form.It does not produce energy. Its functions are: - To provide power when no other power source is available - To assist in damping transient loads in the dc system Battery
Slide 6 - - To provide a short term source during emergency condition The capacity of battery is measured in ampere-hours. Its normal rate is a little over 24vdc in a 28vdc system. It is automatically recharged when the engine-driven generator is operational. Two types of batteries are used in aircraft - Lead-acid batteries - Nickel cadmium batteries
Slide 7 - Lead-acid battery It is usually found in piston aircraft. It is made up of cells which have positive/negative plates of lead and filled with electrolyte of sulfuric acid and water. Each cell has app. 2.2v, but is simply rated as 2 v. It has corrosive effects. Frequent total discharge and remaining battery in discharged condition for a long time will shorten the life of the battery.
Slide 8 - Battery Cell
Slide 9 - Nickel cadmium battery They are the most common type of battery used in turboprop and turbojet aircraft. They provide electrical discharge at a high rate without voltage drop and accept high charge rates that shorten recharge time They may be subject to thermal runaway condition caused by overheating, in which the battery destructs itself.
Slide 10 - Nickel-cadmium battery Cell Terminals Container Main connector Vent pipe
Slide 11 - GENERATORS A generator is a machine that converts mechanical energy into electrical energy by the process of electromagnetic induction They are driven by the engine(s), and sometimes by APU. A generator must be rated at adequate amperage to drive all the operating components on its circuit(s). The current required to operate each electrical component is known as its load.
Slide 12 - All generators produce alternating current naturally.The method which is used to take it from the coil will determine if the generator provides ac or dc to the circuit. If a commutator is used for this purpose it will be a dc generator. If a slip ring is used it will be an ac generator.
Slide 13 - DC GENERATORS: Commutator in the generator converts the ac current to dc current. DC generator is designed to supply nearly constant voltage. Usually the voltage is 28vdc, but there are 270vdc systems developed recently. They supply current up to 400 A. Most aircraft do not have a separate dc generator, but ac produced by ac generator is converted to dc to power dc systems.
Slide 14 - Basic dc generator
Slide 15 - Operation of a basic dc generator
Slide 16 - Producing steady dc
Slide 17 - AC generator (Alternator) On most large aircraft high-load electrical devices are usually AC powered. AC is produced by ac generator which is usually called alternator. AC generators use slip rings instead of commutators to provide the current to the circuits. Alternator generates three-phase current, and standard aircraft voltage is 115 vac with 400 Hz.
Slide 18 - Basic ac generator
Slide 19 - Modern electrical power generation types Mainly two types of electrical power generation currently in use on aircraft. - Constant frequency Integrated drive generators (IDG) - Variable speed constant frequency (VSCF) generators
Slide 20 - Constant Speed IDG It is essential that the alternator output have a frequency of 400 Hz with a very small tolerance. Thus rotational speed of alternator must remain absolutely constant. This is accomplished by using a Constant Speed Drive (CSD) unit between the engine and alternator. CSD provides a constant alternator rpm within a specified engine rpm range.
Slide 21 - An alternator and constant speed drive unit combination is called integrated drive generator (IDG). CSD is hydromechanically operated and needs to be correctly maintained in terms of oil level and oil cleanliness. It is the most commonly used power generation method on today turbine-powered aircraft.
Slide 22 - Integrated Drive Generator
Slide 23 - Constant speed drive
Slide 24 - Constant Speed Drive
Slide 25 - VSCF In this method, the variable frequency power produced by the alternator is converted to constant frequency 400 Hz, 115 vac by solid-state devices electronically. Thus there is no need for CSD unit. It is a new technique and limited in use.
Slide 26 - Variable speed constant frequency generator
Slide 27 - Power Generation Control Power produced by generators is usually controlled by generator control unit (GCU). The main functions of this device are: - Act as a voltage regulator - Direct current to battery for recharging - Provide circuit and generator protection by disconnecting the generator from the system when electrical abnormalities occur.
Slide 28 - Control Devices These devices are use to initiate and control the operation of the circuits.Control devices include Switches Rheostats Relays Solenoids
Slide 29 - Switches A switch is used to start, to stop, or to change the direction of the current flow in the circuit. Toggle switches :They are on/off switches and extensively used in aircraft electrical system. Push Switches : They are used primarily for operations of short durations Rotary switches :When it is necessary to select several condition for a circuit, a rotary switch may be used.
Slide 30 - Rotary Switch
Slide 31 - Toggle switch
Slide 32 - Rheostats : control the amount of current that flows throughout the circuit and used as dimmer devices for instrument and cockpit lights. Relays :Electromagnetic switching devices which are used to remotely control electric circuits carrying large amount of current. Solenoids : Remote control devices quite similar to relays; but they are designed to move a shaft over a short distance. Thus, solenoids are used as mechanical control devices to operate hydraulic or pneumatic valves, locking pins, etc.
Slide 33 - Rheostat
Slide 34 - Schematic of a relay
Slide 35 - Relay
Slide 36 - Conversion Devices There are many occasions within an aircraft electrical system where it is required to convert power from one form to another. Typical examples of power conversion are : - Conversion from dc to ac power - Conversion from 115vac to 28 vdc - Conversion from one ac voltage level to another - Battery charging (from 115vac to 28vdc)
Slide 37 - Following devices are used for these purposes : Transformers Rectifiers Transformer-rectifier units (TRUs) Inverters Transistors
Slide 38 - Transformers : Used to change ac voltage level. Rectifiers : Used to convert ac into high-amperage, low-voltage dc. TRUs: Combination of transformers and rectifiers and used as main unit to convert alternator output to dc in an aircraft Inverters : convert 28 vdc power to 26 vac power particularly for flight instruments or 115 vac. Transistors : Electronic devices that control electron flow and convert ac to dc.
Slide 39 - Transformer
Slide 40 - Analogy to TRU (ac adapter)
Slide 41 - TRUs
Slide 42 - Inverter
Slide 43 - Analogy to inverter (ups for computer)
Slide 44 - Protection Devices These devices are used to protect circuits, cables and system components from damage due to failures. Fuses Circuit breakers Diodes GCUs
Slide 45 - Fuses : They are designed to protect the cables against the flow of short-circuit and excessive current. They break the circuit and stop the current flow when the current exceeds a predetermined value. Circuit breakers :They have same function with the fuses.The difference from the fuse is that they are resettable, while a fuse must be replaced. Diodes : They are the electronic equivalent to the check valves in hydraulic system. They allow electricity to flow in one way only.
Slide 46 - Circuit Breakers
Slide 47 - Circuit Breakers
Slide 48 - Primary Causes of Electrical Circuit Failures Open circuit : It is a circuit that is not complete or continuous. This is an uncommanded interruption of electrical power tosome components or systems. When an open occurs the affected component stop to operate, but the other components still remain in operative condition.
Slide 49 - Common causes of open circuit
Slide 50 - Short Circuit It occurs when electricity is allowed to take a shortcut through or around a component or system. This is the most serious problem. It has two effects : - Affected components have no power and fail to operate - Since current will not flow through affected components, the other components will be subjected to higher level of current causing them to burn out.
Slide 51 - Common causes of a short
Slide 52 - Power Distribution An electrical distribution system is required in order to convey the electrical power to the equipments and systems that need it. Busbar systems Wire and cables
Slide 53 - Busbar System In most types of aircraft, output from the generators is sent to one or more conductors before distribution throughout the system. These conductors are called busbars and they act as distribution centers for electric power. A busbar system is set up so that each power source supplies one or more specific buses.
Slide 54 - Analogy to bus
Slide 55 - A variety of electrical items are hooked up to each bus for power. The buses are interconnected via circuit protection devices which are called bus ties. Bus ties are switches or relays used to connect or disconnect buses from one another. They serve to isolate failed buses from working ones and/or send electrical power to buses that lost their normal power sources.
Slide 56 - Each engine-driven generator, for example, normally drives its own generator bus. High-current drawn items are connected to these buses. Items like fixed fire extinguishers and emergency lights are usually powered off battery bus. That way they are powered for use even when no generator power is available.
Slide 57 - Typical 28vdc system
Slide 58 - WIRES AND CABLES Wires and cables conduct electrical power in its various forms and quantities to and between equipments. There are various types of wires used in aircraft electrical system. The conductor is made of copper or aluminum. The insulation material may be nylon, PVC, or fiberglass.
Slide 59 - Aircraft wires
Slide 60 - Wire size selection The wires installed in an aircraft electrical system are chosen on the basis of ability to carry the required current - without overheating and - without producing an excessive voltage drop. Electrical wire charts may be used for this purposes.
Slide 61 - Maximum voltage drop in load circuits
Slide 62 - Wire chart
Slide 63 - Electrical wire size measurement
Slide 64 - Aircraft wiring diagrams There are different types of electrical diagrams available to understand electrical systems. These diagrams may be in the following forms : - Block diagrams - Pictorial diagrams - Schematic diagrams Many symbols are used in these diagrams.
Slide 65 - Pictorial electric diagram
Slide 66 - ELECTRICAL DIAGRAM
Slide 67 - Aircraft electrical system diagram
Slide 68 - Electrical loads Once the aircraft electrical power has been generated and distributed then it is available to the aircraft services. These electrical services are distributed throughout the aircraft and may be broadly subdivided into following categories. Motors Lighting services Heating services Avionics
Slide 69 - Aircraft Lighting System Lighting system represent an important element of the aircraft electrical services. External lighting systems Internal lighting systems
Slide 70 - External lighting system Provides illumination for such operation as landing at night, inspection of icing condition, and safety from midair collision. Most common aircraft exterior lights : Position lights (navigation lights) Landing/taxi lights Anti-collision lights Inspection lights
Slide 71 - Position lights - Red at left wing tip - Green at right wing tip - White at vertical stabilizer Anti-collision lights - Rotating beam lights - Usually at the top of fuselage or tail Landing and taxi lights - Landing lights at the leading edge of wings - Taxi lights at nose landing gear
Slide 72 - Exterior lights
Slide 73 - Aircraft exterior lights
Slide 74 - Exterior lights
Slide 75 - Exterior lights
Slide 76 - Exterior lights
Slide 77 - Exterior lights