This site uses cookies to deliver our services and to show you relevant ads and presentations. By clicking on "Accept", you acknowledge that you have read and understand our Cookie Policy , Privacy Policy , and our Terms of Use.
X

Download About Antioxidants PowerPoint Presentation


Login   OR  Register
X


Iframe embed code :



Presentation url :

X

Description :

PowerPoint presentation on About Antioxidants, download now ppt of About Antioxidants

Tags :

About Antioxidants

Home / Health & Wellness / Health & Wellness Presentations / About Antioxidants PowerPoint Presentation

About Antioxidants PowerPoint Presentation

Ppt Presentation Embed Code   Zoom Ppt Presentation

About This Presentation


Description : PowerPoint presentation on About Antioxidants, download now ppt of About Antioxidants Read More

Tags : About Antioxidants

Published on : Jan 08, 2015
Views : 447 | Downloads : 0


Download Now

Share on Social Media

             

PowerPoint is the world's most popular presentation software; you can create professional About Antioxidants powerpoint presentation with this powerful software easly. And give your presentation on About Antioxidants in conference, a school lecture, a business proposal or in webinar.

Uploader spend their valuable time to create this About Antioxidants powerpoint presentation slides, to share their knowledgable content with the world. This ppt presentation uploaded by worldwideweb in their relavent Health & Wellness category is available for free download and use according to your industries likefinance,marketing,education,health and many more.

SlidesFinder.com provides a platform for marketers, presenters and educationists along with being the preferred search engine for professional PowerPoint presentations on the Internet to upload your About Antioxidants ppt presentation slides to BUILD YOUR CROWD!!

User Presentation
Related Presentation
Free PowerPoint Templates
Slide 1 - Interesterification In certain lipids the distribution of fatty acids at various positions of the triglyceride are not random. In some cases this is desirable, in other cases, randomness is desired. Exchange of fatty acids may occur at 250 ° C with no catalyst or at 0° C with the proper catalyst.
Slide 2 - Interesterification Melting Point ° F
Slide 3 - Interesterification Lard Performance and Interesterification
Slide 4 - Interesterification Catalyst is usually sodium methoxide
Slide 5 - Interesterification Interesterification within a triglyceride
Slide 6 - Interesterification Or between triglycerides. Start with End with
Slide 7 - Interesterification Directed Interesterification Native lard is too uniform and tends to from b crystals which do not incorporate air well Randomized lard has the proper crystal structure, but is too soft. Best performance when lard contains about 10% trisaturated glycerides. It is possible to have the reaction occur at a temperature that is below the melting point of GS3. This will cause these molecules to solidify and they are not able to participate in further reactions. Results in a lard with b' crystals and the proper consistency.
Slide 8 - Crystallization Polymorphism Polymorphic forms are solid phases of the same chemical composition that differ among themselves in crystalline structure, but yield identical liquid phases upon melting.
Slide 9 - Crystallization Crystal Stability Monotropic - one stable crystal form that proceeds from less stable form to more stable form after heating and cooling Enantiotropic - each form has a definite temperature range of stability Triglycerides are monotropic
Slide 10 - Crystallization Triglycerides
Slide 11 - Crystallization Polymorphic Forms α forms upon cooling from the melt Upon further cooling β forms form Heating α to its melting temperature yields β' forms
Slide 12 - Crystallization
Slide 13 - Crystallization Properties
Slide 14 - Crystallization Properties
Slide 15 - Crystallization Alpha Crystals
Slide 16 - Crystallization Beta prime Crystals
Slide 17 - Crystallization Beta Crystals
Slide 18 - Crystallization β Fats Some fats tend to spontaneously form b crystals: Soybean Peanut Corn Safflower Olive Coconut Lard Cocoa Butter
Slide 19 - Crystallization β' Fats Fats the crystallize in the b' form include: Cottonseed Palm Rapeseed milkfat tallow Modified lard
Slide 20 - Triple Chain Length
Slide 21 - Double Chain Length
Slide 22 - Shortenings Incorporation of air, plasticity, consistency and solid-liquid ratio are important characteristics of shortenings that depend, in part, on polymorphism. β' Crystals - large amounts of small air cells- Yields whiter, creamier product that is tender and has a smooth texture β Crystals - small amounts of large air cells - Yields large clustered crystals with a waxy or grainy texture
Slide 23 - Enrobing Cocoa Butter - 80% composed of disaturated triglycerides SOS = 20% POS = 55% POP = 5%
Slide 24 - POS determines the texture of cocoa butter POS: Alpha form 17° C Beta Prime 27° C Beta 35.5°C Beta prime gives small crystal structure which leads to bloom
Slide 25 - Lard Natural lard mostly OPS (64%) tends to form beta crystals and is poor at air incorporation. Randomized lard is less ordered and it is harder to form beta crystals. Beta prime incorporates more air.
Slide 26 - Melting points (oC) of Fat crystals
Slide 27 - Frying Mass Transfer Water in a frying food migrates from the center to the surface. As water is removed at the surface due to heating, water is 'pumped' to the surface. The rate of water loss and its ease of migration through the product are important to the final characteristics of the food. Heat Transfer Water evaporation from the surface of a frying food also removes heat from the surface and inhibits charring or burning at the surface. The heat of vaporization of water to steam removes much of the heat at the food/oil surface. Heat Removal As long as water is being removed at a sufficient rate, the surface of the food will not char. Subsurface water in the food will also conduct heat away from the surface and towards the center of the product.
Slide 28 - Frying Interior Cooking The transfer of heat to the interior of the product by water will result in cooking of the interior of the food. Want enough heat to 'cook' the product, but not enough to cause damage - example -French fry Oil - Food Interactions Ideally the food products should have similar dimensions and thus, similar surface to volume ratios. Once an equilibrium is established all processes should be the same unless there are changes in equipment function or in oil composition. Oil The properties of oil change with frying. New oil has a high heat capacity that diminishes with use. Other factors such as viscosity may change dramatically with use
Slide 29 - Frying Mass Transfer Heat Transfer Heat Removal Interior Cooking Oil - Food Interactions Oil The properties of oil change with frying. New oil has a high heat capacity that diminishes with use. Other factors such as viscosity may change dramatically with use
Slide 30 - Frying - Stages of oil Break in oil. White product, raw, ungelatinatized starch at center of fry; no cooked odors, no crisping of the surface, little oil pickup by the food. Fresh Oil Slight browning at edges of fry; partially cooked (gelatinization) centers; crisping of the surface; slightly more oil absorption. Optimum Oil Golden brown color; crisp, rigid surface; delicious potato and oil odors; fully cooked centers (rigid, ringing gel); optimal oil absorption. Degrading Oil Darkened and/or spotty surfaces; excess oil pickup; product moving towards limpness; case hardened surfaces. Runaway Oil Dark, case hardened surfaces; excessively oily product; surfaces collapsing inward; centers not fully cooked; off-odor and flavors (burned).
Slide 31 - Frying - Quality of oil Indicators of frying oil quality: Total polar compounds Conjugated dienes FFA Dielectric constant Color pH Sensory Smoke point, Fire point, Flash point
Slide 32 - Frying - Quality of oil Flavor Reversion Special type of oxidative deterioration characterized by an objectionable flavor prior to the onset of true rancidity May develop during exposure of fat to ultraviolet or visible light or heat Reverted soybean oil described as “painty”, “beany”, “haylike” or “grassy” and in final stages as “fishy” Linolenic acid most common source